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Abstract-As an idealization of convection near an ice boundary, flows in both salt-stratified and non- 
stratified liquids generated by a cooled slab of solid material are considered through direct numerical 
simulation When the liquid far from the slab is homogeneous, significant convection occurs below the ice 
and apart from a small boundary layer, hardly no flow appears next to the ice. On the contrary, when the 
background liquid is stratified through a constant salt gradient, a layered flow appears next to the ice if 
the thickness of the slab is large enough. The latter flows are of double diffusive origin and have a significant 

effect on the transport of heat and salt near the ice. 0 1998 Elsevier Science Ltd. All rights reserved. 

‘I. INTRODUCTION 

Step structures in vertical profiles of salinity and tem- 
perature, for example as observed in the ocean, are 
characteristic signatures of double diffusive processes, 
i.e. convection in a stably stratified liquid induced by 
the different molecular diffusivities of two components 
[l]. A typical situation of layered flow occurs in a salt 
stratified liquid over which a horizontal temperature 
difference is apphed. These type of flows have been 
studied in the laboratory for idealized situations, for 
example in rectangular containers [24]. Theoretical 
work has focussed on the critical conditions for the 
double diffusive instabilities to occur [5] and their 
subsequent evolution to well-developed layers [6, 71. 

In case the initial temperature T, is constant and the 
initial salinity S, a linear function of height, layers 
with a characteristic scale 

appear when a Rayleigh number Ra,, based on q, is 
large enough. In e:quation (la), &, is the background 
density gradient [ - /?(X?,/az)] and AT the horizontal 
temperature difference. The parameters CL and jI are 
the coefficients in the linear equation of state relating 
changes in the temperature and salinity to those in the 
density, respectively. The initial scale of the layers may 
be substantially smaller, but subsequent merging of 
layers leads eventually to a layer thickness with scale 
q. An analysis of this layer merging process is given 
in ref. [8]. 
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When, in addition to a stable salinity gradient, a 
destabilizing temperature gradient is initially present, 
and if the stability ratio 

(lb) 

is small enough, layers may propagate even when the 
lateral cooling has been turned off. This so-called self- 
propagation has been experimentally observed by ref. 
[9] and its physics was analysed through direct 
numerical simulation in ref. [lo]. 

A typical situation where one expects these layered 
flows in the ocean is near ice boundaries, for example 
slabs of sea-ice or icebergs, which provide the lateral 
cooling of the stably stratified liquid. Motivated by 
the fact that these flows significantly influence the 
melting of the ice, Huppert and Turner [l 1, 121 per- 
formed the first laboratory experiments on double 
diffusive flows near ice bodies. It was shown that, 
when a block of ice is put into a liquid which is stably 
stratified through a constant salt gradient, the layer 
thickness also scales with q. In this case, the lateral 
temperature difference AT must be taken as the 
difference between the temperature at the ice bound- 
ary (with freezing point based on the far field salinity) 
and that of the liquid far from the ice. The layered 
flows were shown to be of double diffusive origin. The 
melting of an ice wall in a cavity filled with water of 
uniform salinity [13] is completely different. In this 
case and at oceanic ambient salinities, the transport 
of meltwater relatively far from the wall is downward. 
However, next to the ice wall the liquid may become 
buoyant, because the dilution effect due to the melting 
of the ice may be dominant over the cooling effect. In 
any case, no layered flow appears. 
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NOMENCLATURE 

aspect ratio 
thickness of the ice slab [m] 
gravitational acceleration [m ss’] 
layer thickness [m] 
length of half of the ice slab [m] 
Lewis number 
dimensionless pressure 
Prandtl number 
buoyancy ratio 
vertical stability ratio 
thermal Rayleigh number based on r) 
thermal Rayleigh number based on H 
dimensionless salinity 
salinity [-_I 
dimensionless time 
time [s] 
dimensionless temperature 
temperature [K] 
dimensionless velocity vector 
dimensionless horizontal velocity 
dimensionless vertical velocity 
dimensionless horizontal coordinate 
dimensionless vertical coordinate. 

Greek symbols 
CI thermal expansion coefficient [K-l] 

solutal expansion coefficient [-_I 
vertical salinity difference [-_I 
horizontal temperature difference [K] 
internal vertical lengthscale [m] 
dimensionless temperature in the ice 
slab 
dimensional temperature in the ice slab 

Kl 
saline diffusivity [m’ s- ‘1 
thermal diffusivity of water [m’ s-‘1 
thermal diffusivity of ice [m’ s-‘1 
ratio of thermal diffusivities of ice and 
water 
kinematic viscosity [m* s-‘1 
dimensionless density 
initial density gradient [m-‘1 
dimensionless heat flux 
dimensionless salt flux. 

Subscripts 
cr critical 

b 
initial 
reference. 

Superscripts 
h horizontal 
V vertical. 

The double diffusive flows considered exper- 
imentally in ref. [14], using lower ambient tem- 
peratures and smaller salinity gradients than those in 
[12], showed a similar layer formation (with the same 
layer scale). In polar areas, it is common that the 
background salinity S,(z) and temperature T,(z) 
decrease upwards in the upper layers of the ocean. 
Based on the above mentioned laboratory exper- 
iments, one would expect layer formation near ice 
boundaries. These layered structures have indeed been 
observed, for example by ref. [15] near a 150 m ice 
face in the South Cape Fiord in the Arctic. 

One might question how thick such an ice body 
should be for layered flows to appear. For example, 
can these flows develop near relatively thin sheets of 
sea-ice? Another issue of interest is how the transport 
of heat and salt is altered by these double diffusive 
flows, in comparison with direct buoyancy driven 
flows near the ice. Both questions are addressed in 
this paper, where we study flows near (an idealization 
of) an ice slab through a direct numerical simulation 
in a two-dimensional set-up. It is found that the thick- 
ness of the slab has to be larger than the internal 
length scale n for layered flows to appear. The heat 
and mass transport of the buoyancy driven flows is 
strongly modified when layers are present, for example 

the vertical salt and heat transport next to the ice is 
strongly reduced. 

2. MODEL FORMULATION AND NUMERICAL 
IMPLEMENTATION 

In the present numerical study, an ice plate is rep- 
resented by a cooled slab of solid material. This sim- 
plification makes sense since both a cooled cylinder 
and an ice slab result in the same type of flows [12], 
while in the former case there are no effects of ice 
melting on the flow. The slab (length 2H, thickness D, 
thermal diffusivity rco and temperature 0) is cooled 
from above and partially covers a water column in a 
rectangular container (Fig. l(a)) in which a stable 
initial salinity gradient is present (thermal diffusivity 
K~, diffusivity of salt rcs, kinematic viscosity v, tem- 
perature r* and salinity S*). Due to symmetry, only 
half of the container and half of the slab are presented 
in Fig. la ; the right boundary in Fig. 1 (a) is an axis 
of symmetry. 

A linear equation of state with respect to a constant 
reference temperature To and salinity S,, is assumed, 
i.e. p = po(l --cc(TI-- T,)+B(S*-~9,)). The govern- 
ing, equations are non-dimensionalized using scales 
H, Hz/q and Q/H for length, time and velocity, 
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Fig. 1. (a) Geometrical set-up of the problem ; (b) Summary of the boundary conditions prescribed ; (c) 

Typical finite element mesh as used for the thick slab simulation. 

respectively. The temperature and salinity are non- 
dimensionalized by T = (T* - T,)/AT, 0 = (O* - To)/ 
ATand S = (S* --&)/AS, where ASand ATare typical 
vertical salinity and horizontal temperature differ- 
ences, respectively. With this scaling, the container 
wall is located at x = 0, the vertical solid-liquid 
boundary at x = 1, and the symmetry axis at x = 2. 
The bottom of the container is located at z = - 1, the 
horizontal solid-liquid boundary at z = 0, and both 
the upper slab boundary and the top of the liquid at 
z = D/H. These boundaries are indicated in Fig. 1 (a) 

and along the indicated sections, profiles and trans- 
port properties are presented below. 

In primitive variables, the dimensionless governing 
equations become 

Pr-’ r; +(u*V)u) = -Vp+V*u+2Ra,(T-RS) 

(24 
v*u=o G’b) 

dT 
at +(u*V)T= V*T W) 
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as 
at +(u*V)S = Le-’ V’S (2d) 

where 4 is the unit vector in vertical direction. The heat 
transfer in the solid is modeled by the heat equation 

ao 
- = IV20. at 

At the fixed solid-liquid boundary continuity of tem- 
perature and heat flux is expressed as 

T=O, VT*n=/ZVO*n 

where n is the normal on the boundary. 

(4) 

Along the container walls (left and lower boundary) 
no-slip conditions and no-flux conditions for both 
heat and salt are prescribed. At the symmetry axis, 
free-slip conditions and no-flux conditions for heat 
and salinity apply. The top of the slab is cooled 
through a constant temperature 0;. At the solid- 
liquid interface no-slip conditions, no-flux salinity 
conditions and conditions (4) are prescribed. Finally, 
at the upper boundary of the liquid free-slip con- 
ditions and no-flux conditions for temperature and 
salinity are prescribed. The boundary conditions of 
the problem are summarized in Fig. 1 (b). 

The dimensionless parameters which appear in 
equations (2)-(4) are the Rayleigh number Ra,, the 
buoyancy ratio R, the Prandtl number Pr, the Lewis 
number Le and the diffusivity ratio i, defined as 

gclATH’ 
Ra, = ~ , R=!!% 

“‘CT UAT’ 

Pr=J, Le=?, 1~3, 
KT KS XT 

(5a) 

Using the layer thickness scale q, a Rayleigh number 
Ra,, based in 1, can be expressed into model par- 
ameters as 

R = H/q; Ra, = Ra,IR’. (5b) 

A standard Galerkin finite element method [16], 
using quadratic elements for the velocity, temperature 
and salinity, and linear elements for the pressure, was 
applied to equations (2)-(4). This finite element dis- 
cretization is second order accurate in space. A pen- 
alty formulation is used to eliminate the pressure 
unknowns. The nonlinear terms are linearized using 
the standard Newton-Raphson method and the 
resulting sets of linear equations are solved using a 
direct (profile) solver. 

The spatial resolution chosen depends on the thick- 
ness of the slab and the value of Ra,. The lowest 
resolution is used with a relatively thin slab and uses 
31 elements in the horizontal and 21 elements in the 
vertical (which amounts to 9577 unknowns), while the 
highest resolution (for a thick slab) corresponds to 
64 elements in the horizontal and 75 elements in the 
vertical (49 832 unknowns). An example of a typical 
mesh in the latter case is shown in Fig. 1 (c) showing an 

Table 1. Standard dimensionless and dimensional par- 
ameters in this study 

H = 0.2 (m) 
L = 0.2 (m) 
fcs = 1 f 10m9 (m’s_‘) 
K~ = 1. IO-’ (m* s-‘) 
x0 = 1. lo-’ (m’s_‘) 

v=7.10-‘(m’s_‘) 

Ra, = 5. lo4 
R = 2.5 
Pr = 6.7 
Le = 100 

i. = 10 

Table 2. Summary of the different cases considered 

Situation Plate thickness D S(x,z,t=O) 

A (reference) D=H s= l-z 
B D = O.lH s= l-z 
C D=H S=l 
D D = O.lH s= 1 

increased resolution near the solid-liquid boundary. 
Time integration is performed using the implicit 
Crank-Nicolson method except for the first two iter- 
ations where the Euler method is used. Both the res- 
olution and the time step (dimensionless values range 
between 1O-5 and lo-“) were chosen such that halving 
grid space and time step gave similar results during 
the initial stages of evolution of the flow for the typical 
case ‘A’ below. 

3. FLOW DEVELOPMENT 

In the results below, the standard values of the 
parameters are shown in Table 1. This reference model 
can be regarded as an extension of one of the cavity 
models with aspect ratio A = 1 as investigated in ref. 
[8]. To analyse specific double diffusive signatures the 
four different cases as shown in Table 2 are considered. 
Differences appear through the thickness of the slab 
and the presence or absence of a stable initial strati- 
fication. 

3.1. StratiJied background 
Case ‘A’ represents a stratified liquid which is 

cooled by a relatively thick plate of thickness D = H. 
From the substitution of H = D in R = H/q it follows 
from D/q = R = 2.5, i.e. the thickness of the plate is 
larger than the internal layer scale. The initial con- 
ditions consists of a homogeneous temperature and a 
linear salinity distribution, i.e. 

t=O:T(x,z)=l; S(x,z)=l-z; O(x,z)=l. 

(6) 

The time-dependent evolution up to t = 5.5. IO-’ 
(in dimensional units t* = 2.2. lo4 [s]) is shown in 
Fig. 2 through contour plots of the temperature and 
salinity and a vector plot of the velocity field at four 
different times during this evolution. Initially, a 
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(b) 

Fig. 2. Development in time of the temperature, salinity and velocity distribution, case ‘A’, Ra, = 5 * 10“; 
(a) t = 5*10m3 (2.0.10’s); (b) t = l.S*lO~* (6.0*10’ s); (c) t = 3.5*10-* (1.4. lo4 s); (d) t = 5.5*10-* 

(2.2. lo4 s). 

diffusive thermal boundary layer forms near the 
boundaries of the slab (Fig. 2(a)). A strong downward 
flow is induced next to the wall transporting fresh 
water downwards which considerably reduces the sal- 
inity near the ice. This boundary layer flow becomes 
unstable through. double diffusive instabilities and lay- 
ers start to form (Fig. 2(b) and (c)). Convection is 
stronger at the top because the horizontal temperature 
difference is largest. 

Near the corner of the slab (x = 1, z = 0), the iso- 
therms of the boundary layer are necessarily curved 

and hence a horizontal density gradient is set-up. 
Because the density is larger just below the horizontal 
wall of the plate, the convection cell near the corner 
has a clockwise rotation (Fig. 2(a)). Warmer liquid is 
transported under the ice, maintaining the horizontal 
gradient and the cell propagates to the right (Fig. 
2(b)). Since this flow is caused by the asymmetry in 
the forcing, due to the geometry, we will refer to it as 
an geometrically induced flow. 

Although the latter (forced) convection is present 
below the ice slab, layer formation occurs along the 
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Fig. 3. (a) Vertical density distribution along section 5 ; (b) 
Grayscale plot of the anomalous salinity distribution 
(difference of actual and initial salinity) for case ‘A’, 
Ra, = 5 * 104. Light (dark) regions indicate a higher (lower) 

salinity than the initial salinity. 

complete vertical boundary of the slab and is much 
more intense. At the time when the flow has become 
quasi-stationary (Fig. 2(d)), the distribution of the 
density field (Fig. 3(a)) along section 5 (Fig. l(a)) 
shows the characteristic step structures associated 
with the layers. Near z = 0, the density gradient 
changes substantially and the liquid slightly above 
z = 0 is much more stable than that immediately 
below z = 0. This jump is expected to strongly influ- 
ence the vertical transport since the liquid below z = 0 
is not easily mixed with the liquid above, in other 
words a ‘shielding effect’ occurs. 

The layered structures, as well as the exchange of 
salt due to the geometrically induced flow can be more 
clearly observed in the grayscale plot of the anomalous 
salinity distribution (difference with respect to the 
initial salinity) in Fig. 3(b). The vertical lengthscale h 
of the layers can be estimated from Fig. 2(d) and 3(b) 
and it is found that the ratio h/D is about 0.24. Since 
D/q equals the buoyancy ratio R = 2.5 (based on the 
initial salinity profile), the ratio h/q is about 0.60. 
There exists a close agreement between the layer devel- 
opment next to the plate and the initial layer devel- 

opment in the square cavity simulation in ref. [S] for 
R = 2.5. First, from Fig. 4 in ref. [S] we calculate that 
the ratio h/D for the middle layer at t = 0.05 is about 
0.3. With D/q = 2.5, the value of h/q becomes 0.8 
which is slightly larger than the value obtained above 
for slab cooling. The latter difference is attributed to 
the fact that in ref. [8] the overall temperature differ- 
ence is slightly larger because the temperature along 
the wall is homogeneous, whereas for the slab, it 
decreases downward along the wall. The timescale of 
the development of the layers in both cases is quite 
similar. In the slab model, the second convection cell 
has advanced roughly over a distance AX = 0.5 at 
t = 0.055. In Fig. 4 of ref. [8], a similar scale for AX is 
found at t = 0.05. 

In case ‘B’, the slab thickness is significantly smaller 
than the internal layer scale (D/q = 0.1 R = 0.25). The 
patterns of the temperature and salinity (Fig. 4(a)) do 
not show any signatures of layer formation. On the 
contrary, there is strong mixing both next to and 
below the slab, the latter component again geo- 
metrically induced as can be seen from the velocity 
distribution. The latter flow strongly modifies the flow 
next to the slab resulting in the absence of step struc- 
tures in the density profile (Fig. 4(b)). The results 
indicate that the slab should be sufficiently thick 
(larger than the internal lengthscale q) for the layers 
to develop. If the slab is thinner, a fluid element 
initially near the top of the layer that is descending 
along the slab must pass the corner of the slab before 
it can turn back inside the liquid. At that point the 
fluid element is necessarily influenced by the geo- 
metrically induced flow. 

The value of Ra, applied in the previous simulations 
is rather small compared to that in experiments per- 
formed by [ 121. Therefore, we increased the Rayleigh 
number while keeping R constant, which can be 
regarded as increasing the value of H while keeping 
other scales constant. In particular, when H is 
increased by a factor three, Ra, = 1.35 * lo6 results. 
For this value of Ra, the computations are very 
expensive and only the initial stages of flow develop- 
ment were computed (up to t = 5 * lo-’ or t* = 
1.8 * lo4 [s]). Since time scales with Hz, the same dimen- 
sional time t* is reached at t = 4.5 * lo-* for the stan- 
dard case Ra, = 5 * 104. The results for Ra, = 1.35 * lo6 
are shown in Fig. 5(a) (‘A’) and Fig. 5(b) (‘B’) reveal 
a strong convective activity both next to as well as 
below the slab. Along the vertical slab wall for case 
‘A’, a layered pattern develops similar to the simu- 
lation with Ra, = 5. lo4 but with a slightly smaller 
thickness. This smaller scale appears because the simu- 
lation time is too small for subsequent layer merging 
to occur. In case ‘B’ no layered flow pattern develops 
for similar reasons as explained above. Again, most 
of the convective activity occurs below the slab. For 
both cases ‘A’ and ‘B’, significant convection is seen 
below the ice (Fig. 5) contrary to that in Fig. 2(a) and 
4(a). This is likely due to diffusive instabilities through 
vertical gradients [17], which have destabilized the 
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Fig. 4. (a) Temperature, salinity and velocity distributions at t = 5.5 * lo-’ (2.2 * lo4 s) for the stratified 

case ‘B’, Ra, = 5 * 104; (b) vertical density distribution along section 5. 

S ii 

Fig. 5. Temperature, salinity and velocity distributions at t = 5. 10m3 (1.8. lo4 s) for the stratified cases, 
Ru, = 1.35. lo6 ; (a) case ‘A’ ; (b) case ‘B’. 
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thermal boundary layer below the slab. Its signatures 
are the formation of a well-mixed layer which is grow- 
ing downwards through entrainment [ 181. 

3.2. Non-strat$ed background 
Cases ‘C’ and ‘D’ are equivalent to cases ‘A’ and 

‘B’ but with the absence of the initial salinity gradient. 
Hence, the initial state consists of both homogeneous 
temperature and salinity distributions, i.e. 

t = 0: T(x,z) = 1 ; qx, z) = 1 ; O(x,z) = 1. (7) 

Note that if the salinity is homogeneous initially, it 

T 

1 .o 

0.5 

(b) N 0.0 

-0.5 

-1.0 i 

remains constant during the evolution since a constant 
solute concentration is compatible with the boundary 
conditions. Hence, only the flow due to the cooling of 
the liquid by thermally induced buoyancy is 
considered. In this way, the signatures of double- 
diffusive convection and, in particular, its influence 
on the heat and mass transport can be determined. 

For the thick slab (Fig. 6(a)), a narrow thermal 
boundary layer forms next to the slab, of which the 
thickness increases downwards. This is a classical 
boundary layer for which the thickness scales with 
Ra-‘14, where the Rayleigh number is based on the 

G 

\ 

0 5.0x105 LOxlO 1.5x106 
Density 

Fig. 6. (a) Temperature and velocity distributions for Ray = 5 * lo4 at t = 5.5. lo-’ for the non-stratified 
case ‘C’ ; (b) vertical density distnbution along section 5. 
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Fig. 7. (a) Temperature and velocity distributions for Ra, = 5. lo4 at t = 5.5 * lo-* for the non-stratified 
case ‘D’ ; (b) Vertical density distribution along section 5. 

distance along the slab boundary. The flow below 
the slab is again :geometrically induced by horizontal 
density gradients and occupies the whole region below 
the slab. No step structures in the density at section 5 
are present (Fig. 6(b)) demonstrating that these are 
characteristic features of double diffusive processes. 
For the thin slab, the boundary layer next to the ice 
has a near constant thickness and the convection 
below the ice is much weaker because the temperature 
gradient in the ice is much smaller (Fig. 7(a)). Apart 
from that, the flow is very similar to that of the thick 
slab in that no appreciable flow appears next to the 
ice resulting in nearly the same density profile as that 
in Fig. 6(b) at section 5 (Fig. 7(b)). 

For Ra, = 1.3s * 106, snapshots of the flows in the 
cases ‘C’ and ‘D’ are shown in Fig. 8(a) and (b), 
respectively. The boundary layer thickness next to the 
ice is smaller, as expected, and convection is much 

more intense below the ice. However, still no appreci- 
able flow develops far from the slab next to the ice. 
This picture is in qualitative agreement with the exper- 
imental results of ref. [19] which also show a thermally 
induced vigorous flow just below an ice surface. With 
a lengthscale equal to half of the length of the slab 
and a temperature difference of order O(1) between 
the ice slab and the bulk of the liquid, the Rayleigh 
number Ra, is about 3.2. 106, near the value used in 
our simulation. 

3.3. Heat and mass transfer 
An analysis of the heat and mass transport of the 

flows computed above is considered through the 
values of the integrated transport across the sections 
depicted in Fig. l(a). The horizontal heat and salt 
fluxes across sections 1 and 2 are defined as 
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Fig. 8. Temperature distributions at t = 5.10-j for the nonstratified cases, Ra, = 1.35. 106; (a) case ‘C’ ; 
(b) case ‘D’. 

a+ = S=O [UT-aT/tYx],=,,dz; 
;= -1 

;=a 
@- = 

S--i 
[us- Lr- ’ &S/~X],,.~, dz @a) 

whereas the vertical fluxes across sections 3 and 4 are 
computed through 

s x=l 

r& = [wT-Z/az]_dx; 
r=Ll 

s 

x=l 
(D; = [wS-Le-’ aS/iIz],_,,dx. (gb) 

.Y=” 

In Fig. 9, the evolution of the salt fluxes along the 
sections 1 and 3 is shown for case ‘A’. These fluxes 
are not expected to change significantly beyond the 
simulation time, unless subsequent layer merging 
occurs leading to a different flow pattern. Never- 
theless, these flows are (at best) quasi-stationary and 
the calculations on the heat and mass transport rep- 
resent only snapshots. However, the results should be 
sufficient to determine the qualitative differences of 
the transport between the flow considered. The heat 
and salt fluxes across the sections 14 for the cases 
‘A-D’. (Ra, = 5 - 104) are presented in Table 3 and 4, 
respectively. A positive value indicates transport of 
the particular quantity in the positive x- or z-direction. 

The reduction of vertical heat transport due to layer 
formation can be immediately seen by comparing the 

1.0 1 

-1.O; ,s, + 

Fig. 9. The temporal development of salt fluxes ms along 
sections 1 (Sl) and 3 (S3) for case ‘A’. 

Table 3. Integrated heat fluxes along sections indicated in 
Fig. la, t = 4.5. IO-‘, Ra, = 5. IO4 

Case Section 1 Section 2 Section 3 Section 4 

A 0.143 0.085 0.493 0.593 
B 0.672 -0.513 1.50 0.952 
C -0.530 1.02 2.84 3.07 
D 2.48 0.055 1.25 0.764 
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Table 4. Integrated ,jalt fluxes along sections indicated in Fig. 
la, f = 4.5 * 10-2, Ra, = 5 * lo4 

Case Section 1 Section 2 Section 3 Section 4 

A -0.310 -0.123 0.076 -0.023 
B -0.387 -0.424 0.437 0.349 

heat transport through the sections 3 and 4 for the 
cases ‘A’ and ‘1%’ (Table 3). Both values are sig- 
nificantly smaller for case ‘A’, indicating that the 
‘shielding effect’ has a pronounced effect on the ver- 
tical transport of heat. The same follows for the ver- 
tical salt transport which is mainly upwards at both 
sections in case ‘B’, but upwards at section 3 in case 
‘A’ and downwards at section 4 (Table 4). The latter 
result indicates that the layered flow also causes a 
strong reduction in the vertical transport of salt, and 
that salt transport is mainly lateral. 

Below the slab, the lateral heat transport is also 
much smaller in case ‘A’ than in case ‘B’ along section 
1 (Table 3). This is a consequence of the strong geo- 
metrically induced flow in case ‘B’ (Fig. 4(a)), where 
warm water is mixed under the ice ; this effect is much 
smaller in case ‘A’ (Fig. 2(d)). The same flow can 
explain the different heat transport along section 2. 
The salt transport is to the left-along both sections 1 
and 2 (Table 4) due to the return flow far below the 
ice. This net transport is partly responsible for the 
strong stratification near z = 0, inducing the buoy- 
ancy jump associated with the ‘shielding effect’ in case 
‘A’, as discussed below. 

The vertical transport of heat in the non-stratified 
case takes place mainly within the boundary layer 
near the slab. Since the flow is downward and the ice 
cools the liquid, the effective heat transport is upwards 
resulting in the p’ositive values in Table 3 for the cases 
‘C’ and ‘D’. The boundary layer flow is much stronger 
for the thick slab (compare Fig. 6(a) and 7(a)) result- 
ing in much larger values for the heat transport along 
sections 3 and 4 in case ‘C’. Since the flow below the 
ice is likely to b’: very intermittent, not much value 
can be put on the actual numbers of the horizontal 
heat transport al’ong the sections 1 and 2 ; these are at 
most indicative. 

4. DISCUSSION 

In this paper, we considered buoyancy driven flows 
in a liquid near a cooled solid boundary. The liquid 
has either a constant background salinity or is strati- 
fied through a constant salinity gradient. In both 
cases, the average salinity is large enough such that a 
linear equation of state is applicable. Through the 
idealization of the ice as a non-deformable boundary 
dilution effects due to the melting of the ice were 
not considered. Also the effect of the freezing point 
depression due to salinity was neglected. Both features 

may be important in ‘real’ convection near ice bound- 
aries, but are out of the scope of this study. Fur- 
thermore it was shown in refs. [7, 91 that, under 
oceanographical conditions, meltwater has a neg- 
ligible effect on the structure and thickness of the 
layers. Concentrating on the induced convection pat- 
terns, we consider the non-deformable slab ide- 
alization to be appropriate. 

It was shown that the two types of flow are com- 
pletely different. In the non-stratified case, the flow in 
a thin boundary layer near the ice is responsible for 
the vertical transport of heat and salt next to the ice. 
Hardly any flow develops outside this boundary layer. 
Vigorous convection develops below the ice, forced 
by the temperature gradients in the ice. The thickness 
of the slab plays a minor role and although the inten- 
sity of the flow does depend on Ra,, the overall charac- 
ter does not. 

On the contrary, for the flows developing in the 
stratified environment, the lateral cooling of the liquid 
results, through double diffusive processes, in the for- 
mation of horizontal layers with a characteristic 
lengthscale q. For the particular case ‘A’ investigated, 
the result h/q = 0.6 compares quite well with the scales 
as reported by ref. [12] and presented in their Tables 
1-3. For example, considering experiments no. 2 and 
no. 3 in their Table 1, experiments no. 1, no. 6 and 
no. 8 in their Table 2, and experiment no. 14 in their 
Table 3, we see that for values of Ra, close to 5 * lo4 
the corresponding values of h/n are in the range [0.56, 
0.981. Moreover, our particular value is close to the 
value of h/g = 0.65 they propose based on all exper- 
iments. The double-diffusive flow next to the slab 
appears to be little influenced by the flows in other 
regions due to the buoyancy jump generated at the 
lower slab edge. This jump arises through both the 
appearance of layers and the geometrically induced 
flow. Since the salinity is low near the ice, relatively 
fresh-water is transported to the left by the convection 
just above z = 0 (Fig. 2(d) and 3(b)). By the geo- 
metrically induced flow, salt is transported upwards 
just below z = 0 (Fig. 2(d)) resulting in the density 
jump near z = 0. The resulting ‘shielding effect’ was 
shown to have a substantial impact on the vertical 
transport of heat and salt near the ice. 

For layers to appear, it is necessary that the thick- 
ness of the slab is larger than the length scale 4. A 
layered flow will not develop due to lateral gradients 
if the thickness is smaller than r) because the flow is 
disturbed by the geometrically induced flow below the 
ice. In oceanographic measurements of step structures 
[15], the density gradient in the ocean is three orders 
of magnitude smaller and Ra, is a factor 10’ larger. 
This leads to scales q of the order 0.1-0.2 [ml. These 
layers can therefore indeed be attributed to sideways 
cooling due to an ice slab and both sea-ice and icebergs 
will be able to induce them. However, it may not be 
easy to distinguish the origin of the layers in terms of 
the destabilizing background temperature gradient. 
For example, all measurements used in ref. [20] to 
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may result and thereby differing mixing coefficients. 

compute overall mixing coefficients due to double 
diffusive processes assume that these layered flows are 
caused by a vertical destabilizing heat flux (through 
diffusive instabilities [17]). However, the layers may 
just as well be caused by sideways cooling, for example 
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